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D-5170 Julich, Federal Republic of Germany 
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Abstract. Two-dimensional Ising ferromagnets with spins perpendicular to the plane are 
destabilised by dipole interactions. Ferromagnetism is destroyed by domain walls which, at 
low temperatures, form a square network on a square lattice. At higher temperatures, 
domainwalls form afloatingsolid, the periodofwhich decreasescontinuouslywith increasing 
temperature. 

1. Introduction 

It was recently shown by Yafet and Gyorgy (YG) (1988) that ferromagnetic ultra-thin 
films with an easy axis perpendicular to the film are unstable with respect to domain 
formation if the anisotropy is larger than some threshold. The case treated by YG was 
that of a weak anisotropy and a weak dipole interaction, as relevant for Ni, Fe or Gd 
films. 

Here, we present a study of the opposite limit: infinite anisotropyperpendicular to 
the film and dipole interaction g not very much weaker than the exchange coupling J, 
say 10 < J / g  < 20. The results are expected to hold qualitatively even for reasonable 
anisotropy. If J / g  becomes too large, the ground-state domain size increases expo- 
nentially and becomes rapidly larger than any laboratory-at least in the Ising limit. 

The following results will be established. 

(i) The domain size, as already noted by YG, is independent of the size and shape of 
the sample. Thus, in contrast with the three-dimensional case, domains cannot be 
suppressed by using a toroidal sample. Thus, it is more appropriate to speak of a magnetic 
structure than of domains. 

(ii) The domain size is finite (although usually large) even for an infinite anisotropy 
in contrast with the results of YG. 

(iii) The domain size is a function of temperature. Near the transition, it is moderate 
even when J / g  is large. 

(iv) The equilibrium magnetic structure is made of intersecting domain walls in 
several directions. 

(v) Except at very low temperatures or for very low values J / g  (<2) the walls form 
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Figure 1. (a) A rectangular domain structure. If 
i E A,) ,  the sites j contained in the shaded rec- 
tangles do not contribute to (4). The dotted rec- 
tangle is T,(L, M ) .  ( b )  The domain wall segment 
AB has length l/sin 0 and cuts l / tan 8 vertical 
bonds and one horizontal bond. Its energy per 
length is therefore 2J(1 + cot 8) sin 8 in agree- 
ment with (3). 

Figure 2. Geometrical significance of n,(r) in (8). 

a ‘floating solid’ of the type discussed by Jancovici (1967), Kosterlitz and Thouless (1973) 
and Nelson and Halperin (1979). 

These properties seem to be new in spite of previous work on domain walls in thin 
films (Nee1 1955) and on magneticstructuresof dipolarmagnets (Cape1 1965, Kretschmer 
and Binder 1979). 

2. Magnetic structure at T = 0 

We assume that the magnetic structure at T = 0 consists of a regular array of domains 
with respective + and - spins, e.g. a rectangular array (figure 1). The rectangular 
structure with sides L and M includes as special cases the square network ( L  = M )  and 
the striped network ( M  = m). It is difficult to exclude completely the possibility of more 
complicated structures, but it will be shown that the ground state is neither ferromagnetic 
nor striped. 

For definiteness the case of a square lattice with lattice constant of unity and of a 
rectangular wall structure will be considered. 



Instability of ZD Ising ferromagnets 62 1 

If the ferromagnetic structure is taken to have zero energy, the energy of arectangular 
wall network with sides L and M is 

where the exchange part for a crystal of N atoms is 

8 is the angle of the walls with the directions of the square unit cell. An elementary 
calculation yields (figure l(b)) 

The dipole part is 

= + W d i p  (1) 

(2) We,  = 2J(N/LM)(L + M ) f ( 8 ) .  

f(e) = /cos 81 + Isin 81. (3) 
N 

where i, j denote atoms with spins ai, uj = +1. One can restrict i to a given cell of 
the wall network, denoted A,, and multiply by the number v = N/LM of cells. Now 
1 - aioj = 0 for one half of the cells (including A,) and 1 - aiaj = 2 for the other cells 
B1, B2,. . .: 

where .( 

It is shown in the Appendix that, if g/J  is small enough, the contribution W$ip to ( 5 )  
of those cells B, which are not neighbours to A ,  is negligible with respect to ( 2 ) ,  and 
therefore cannot destabilise the ferromagnetic structure. This property is easily extended 
to other types of crystal lattice and wall network. We now consider the contributions to 
( 5 )  of the four neighbouring cells B,,  B2, B, and B4 (figure 1): 

W&ip = -2(N/LM)g(K, + K2). ( 7 )  
For given m ,  rq has certain allowed values r. Let n,(r) be the number of pairs i ( EA,), 

j (E B,) with a given r .  Then 

We now assume that 

Then, nm(r) is the intersection of Bm with T(r)A,  (figure 2 ) ,  where T(r) is the projection 
operator with translation vector r = ( x ,  y ) .  For the two adjacent cells K ,  and K2 (figure 
2 )  it is readily seen that n1 and n2 are zero except in the following cases: 

L , M S l .  (9) 

n l k >  = ( M  - lY l )X  O S X S L ,  - M S y S M  

n l w  = ( M  - /Y/)(2L - X I  L S X S ~ L ,  - M S y S M  

n2(4 = ( L  - IXl>Y O < y < M ,  - L S X S L  

n2k)  = ( L  - Ixl)(2M - Y )  M < y < 2 M ,  - L S X S L .  
In the limit (9),  the sum (8) can be replaced by an integral: 

(10) 
M - Y  

(x2 + y2)3/2 
K1 = 2 / M d y / L x d x  (x? + - y ) " 2  + 2 dy 1; dx (2L - x )  

Y O  xo Y O  

with appropriate lower integration bounds x o  and yo. As it is shown in the Appendix, at 
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least the leading behaviour of K ,  for L ,  M 9 1 does not depend on these bounds. The 
result of the calculation (see Appendix) is 

If g/J is small, only the first term can balance the exchange energy (2). K2 is obtained 
from (11) by interchanging L and M. Insertion of (2), (7) and (11) into (1) yields, as 
seen: 
WIN = 2J(L-' + M- ' ) f (6 )  - (4/L)g In L - (4/M) g In M 

K~ = ~ M I ~ [ L / ( z  + VI + L~/M*) ]  + o(V\/L~ + M ~ ) .  (11) 

+ (g/LM)O(v7?xiF) .  (12) 
Minimisation with respect to 6 yields at once the result thatf( 0 )  should be minimum. 

Hence, 6 = 0, domain walls should be parallel to the sides of the cubic unit cell and 
f ( 6 )  = f ( O )  = 1. Replacingf(6) by 1, minimisation of (12) with respect to L and M 
yields for L ,  M 9 1 (i.e. for J sufficiently larger than g) 

L = M = exp(1 + J/2g). (13) 
This increases from 400 to 60000 inter-atomic distances when J/g goes from 10 to 20. 

Since the last term in (12) is neglected-which is justified only for J / g  1-equation 
(13) and thus the above values should only be considered as estimates of the order of 
magnitude of L .  If J / g  takes the high value that it has in Gd or Fe, L and M may be in 
practice replaced by x ,  as found by YG using continuous spins instead of an king model. 

The conclusion of this section is that, of all rectangular structures, the square network 
of domain walls parallel to the sides of the square unit cell has the lowest energy. 
Presumably, it is the ground state. All structures with domain walls parallel to other 
directions are expected to have a higher energy because of the factorf(6) in (2). 

3. Effect of temperature 

The evaluation (13) holds so long as the domain wall thickness is of the order of 
magnitude of the inter-atomic distance. In the Ising model, this property is satisfied 
below some fraction of T,, at least below Tc/2 in any case. 

It will now be seen that, in the mean-field approximation, the period becomes much 
smaller (for J 9 g) near T,. 

In the mean-field approximation (Villain 1962) the thermal averages m, = (a,) should 
minimise the free-energy functional 

F = -E j,m,m, + + K ~  T C  [(I + m,)  In(1 + m i )  + (1 - m,)  ln(1 - m,) ]  (14) 

ill = J - g / r i  (-1 
J ,  = -& otherwise. (15b) 

11 I 

where 
if i ,  j are neighbours 

Introducing the Fourier transforms mk and expanding the logarithms, (14) reads 

where 
j ( k )  = E jl1 cos(k. r,,) = 2J(cos k ,  + cos k y )  - g E r i 3  cos(k r , ) .  (17) 

I I 

The minimum of (16) corresponds to mk 0 for KBT > j(kM), where kM is the value 
of k for which J(k )  takes its maximum. 
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At the temperature 

T ,  = &i)/KB (18) 
a transition occurs, which is continuous since (16) contains no third-order terms and the 
fourth-order terms have positive coefficients. The period 2L just below T, is given by 

L(T,) = n/kM.  (19) 
There is in principle no difficulty in determining (for instance numerically) the 

minimum of (14) at all temperatures. This will not be done, and only the neighbourhood 
of T, will be explicitly treated. The remaining task is to evaluate kM. 

We asume that L S 1 (i.e. k < 1). In this case the sum on the right-hand side of (17), 

is nearly isotropic with respect to k .  For convenience, we choose k to be parallel to a side 
of the cubic unit cell (x direction). Then, S ( k )  is given by 

cc 
x 1  

S(k) = 2 2 cos(kx)R(x) + 2 7 (20) 
x =  1 y = l Y  

where R(x) is the sum over an atomic row at distance x perpendicular to the direction of 
k .  This sum can be replaced by an integral if x is not too small: 

sc 
2 dy _ _  - 1 

R(x) = 2 2 312 (x2 + y2)3/2 x 2 '  
y = - s c ( x  + y ) --z 

This approximation that has been discussed in detail by Y G .  The corresponding error is 
only of the order of 1% for the smallest possible x = 1. Now the sum over x may also be 
replaced by an integral if one introduces an appropriate lower integration bound xo: 

COS( kx,) ?G + k Si(kxo) - k -. (21) 
x 1  
7 cos(kx) + 1% $ cos(kx) = 2 XO x 0 

x = l X  

Since we are interested in small values of k, it is a reasonable approximation to choose 
the bound xo = 6/n2 which yields the correct result fork = 0 (cf. the work by YG). With 
c = Z;=1y-3 = 1.202, insertion of (21) into (20) finally yields 
j ( k )  = 2J(cos k, + cos ky)  - 4g{[cos(kxO)]/x0 + k Si(kxO)) + 2ngk - 2c 

- 41 - 2g(2/x0 + c) + 2ngk - (J + 2gxo)k2 + O(k3). 
k d l  

The maximum corresponds to kM = n g / ( J  + 2gx0), i.e. with (19) 

which is considerably smaller than (13), and physically meaningful even for large values 
of J/g. Unfortunately, (22) is only a mean-field approximation! 

When the temperature is decreased from T, to 0, L increases from (22) to (13). This 
occurs continuously except at very low temperatures as seen in § 4 which corrects the 
mean-field approximation. This correction is necessary because the system may be 
regarded as a two-dimensional solid of domain walls. A two-dimensional solid is known 
to have infinitely large position fluctuations (Jancovici 1967) so that the mean-field 
approximation is not reliable. Note that the transition temperature has no reason to be 
affected by wall fluctuations. The transition is determined by the appearance of a finite 
domain magnetisation. Thus, in the limit g 4 J, T, has approximately the same value as 

U T , )  = (J + 2gxo)/g = J/g (22) 
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in the ferromagnetic Ising model with interactions J between nearest neighbours, which 
has the same order of magnitude as (18). 

4. Floating and commensurate phases 

In (12), there is no interaction term between L and M (i.e. between walls of both 
directions at leading order). We shall assume that this interaction can also be neglected 
in excited states and we shall consider only one family of walls, say those parallel to y ,  
and ignore the interaction with walls parallel to x. 

If dipole interactions are provisionally forgotten, walls should be allowed to have 
kinks dx = 21 ,  the average distance of which is of the order of (Villain et a1 1985, Villain 
and Bak 1981) 

1 = exp(2PJ). (23) 
Since walls are straight on distances much shorter than 1, a wall (say the mth wall) is 

still reasonably well determined if one does not know all its points x,(y), but only the 
intersections xP, = xm(pl’). I’ should be chosen sufficiently smaller than I (say 1‘ = 1/3) 
so that IxP, - xP,-’ I S 1 with a probability close to unity. 

Forgetting interaction between walls, the free energy can easily be evaluated as a 
function of the xP, values since it is a one-dimensional problem. Let us consider, for 
example, the piece of the mth wall between y = ( p  - 1)l’ and y = pl’ and define AP, = 
xP, - xP,-’, Because of our choice of I’ it should be sufficient to consider only con- 
figurations of the piece of wall with at most one kink Sx = +1 somewhere in between. 
The possible values for A$, are then given by 0 and 2 1. For each value of AP, , one may 
average over all internal wall configurations which correspond to that particular AP, and 
thus introduce the free energy F’(AP,) of the piece of wall. Under the above assumption, 
F‘ is easily determined: 

I 

Note that 2Jis  the energy of a kink. The factor I’ corresponds to the I’ possible locations 
of a kink on the piece of wall under consideration. Note that the error introduced by 
neglecting configurations with two or more kinks is of order ( l / l ’ ) 2 .  F’ can be written as 

Thus the total free energy is 
F ’ ( A )  = KB TA2 ln(l/l’). 

Now, we want to take dipole interactions into account. We would like to write the 
interaction as a sum of effective interactions VP,(xct - x$$’p,) between pieces of walls. 
We consider low temperatures where I is large, so that one can keep the terms p = 0 
only. However, it is proved in the Appendix that only neighbouring domains contribute 
to the dominant terms in (12). So we keep only the terms m = 1 and write the dipole 
energy as 

x/edip = V(Xp, - XL-1). 
mP 

Vis the product of the number 1‘ of atoms per degree of freedom, by the domain wall 
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dipole energy per atom, which is -4gln L according to (12). Writing xP, = mL + UP,, 
one finds that 

V(xP, - X k - 1 )  = I’[V(L) + 2gL-’(uP, - U P , - 1 ) * ] .  

Thus, together with (24) 

(25) 
This is an anisotropic SOS Hamiltonian (Burton and Cabrera 1949, Chui and Weeks 

1976, van Beijeren and Nolden 1987). This Hamiltonian is known to have a transition 
(‘roughening transition’) at a temperature TR above which ((UP,)’) is infinite in an infinite 
sample while it is finite below TR. In this present context, a finite value of ((UP,)’) means 
that the domain wall network is pinned by the lattice. An estimation for TR is easily 
performed if one remarks that, for Z/1’ = 3, one coupling constant is of order KBT. Now, 
if one chooses T such that the other coupling constant is of order KBT as well, this 
temperature is close to TR since the model is then roughly isotropic, and in the isotropic 
SOS model KBTR is approximately equal to the coupling constant. Thus, KBTR = 
2gL-*l’( TR)  E gL-‘l( TR) , Of according to (23) 

KB TR = gL-’ eXp(J/KB TR). (26) 
We are mainly interested in the case g G 1. Let us make the ansatz TR -=S T,. Then L 

is given by (13) and insertion into the above equation yields 

Comparison with (18) shows that the ansatz TR G T, is satisfied. 
At nearly zero temperature, L probably has the integer value which is closest to (13). 

Increasing temperature presumably changes L by discontinuous steps as in the three- 
dimensional ANNNI model (Villain 1962, Elliott 1961, Fisher and Selke 1981, Bak 1982), 
until the temperature TR given by (26) is reached. The alternative possibility of a devil’s 
staircase (Aubrey et a1 (1985) and references therein) should also be considered. Above 
TR the fluctuation  UP,)^) which may be calculated from (25) is infinite and the wall 
network forms a floating solid (Nelson and Halperin 1979) as in the two-dimensional 
ANNNI model (Villain and Bak 1981, Bak 1982). Since acrystalline symmetry is imposed, 
no intermediate (hexatic or ‘tetratic’) phase (Nelson and Halperin 1979) is expected. 

KB TR E g. (27) 

5. Conclusion 

Two-dimensional Ising ferromagnets with spins perpendicular to the plane are desta- 
bilised by dipole interactions. Ferromagnetism is replaced by domain walls which prob- 
ably form a square network on a square lattice. The period is unphysically large at low 
temperatures if the exchange energy is, say, more than 10 times the dipole energy. Near 
the transition, however, the period (at least as predicted by the mean-field approxi- 
mation) should be measurable in all cases. The period varies continuously with tem- 
perature except at very low temperatures where, in a clean sample, a succession of 
commensurate structures is expected. 

Experimental confirmation should be possible on magnetic adsorbed films, but the 
requirements are rather stringent: the system should be an Ising ferromagnet with spins 
perpendicular to the surface, and the exchange interaction should be weak. However, 
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the case of a finite anisotropy has probably similar properties (in particular, domain 
walls forming a square lattice) and a shorter period as shown by YG. However, the walls 
are thicker and commensurate structures even less stable. 
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Appendix. Proof of (12) 

We first consider the contribution W$ip to (5) of those domains B, which are not 
neighbours of A. (denoted B5,  B6,  B,, . . .). For any i E Ao, there is the upper bound 

where Tj (L ,  M) is the rectangle of sides 2L x 2Mcentred on i (figure 1). It results, after 
summation over i in ( 5 ) ,  in 

IwAipI < NgQ(L, W .  (AI) 
Now, replacing sums by integrals gives 

Q(L,  M )  = 2 d x  1% dy (x2 + y2)-3'2 + 2 1; dy I-: dx ( x 2  + Y * ) - ~ / *  
L --x 

Insertion into (Al) yields 
(l/A)lWi,pl < 4g(L-' + M- ' )  = (g/LM)O(VL2 + M2). 

Next, we consider the contribution K ,  of the neighbour domain B ,  (figure 1). In 
(lo), K1 is given as a sum of two integrals I I  and 12: 

K ,  = 2(1, + Z2) .  (A3) 
Since the calculation of these integrals is rather tedious, we shall only sketch how the 
result (11) is obtained: 

= M[ln(M + 6$T?iP) - In(yo + 
- M{ln[(M + VL* + M ~ ) ]  - In[(yo + VyZ, + L*)]}  
- (VXZ, + M2 - V m )  + ( V L 2  + M2 - V / L 2 ) .  

zI = M I ~ [ L / ( I  + VI + L ~ / M * ) I  + o(VFX9). 

As one readily sees, the leading behaviour for L ,  M % 1 is independent of the lower 
bounds xo and yo: 

(A41 
We refrain from performing the integral I2  explicitly. It is easily seen that Z2 is 
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O ( m )  and can thus be neglected with respect to I ,  when L ,  M % 1. Equation 
(A4) inserted into (A3) proves equation (11). Use of (Al)  then leads to 

= 2J(L-' + M-' ) f (e)  - ( 4 / ~ ) g  In L - (4/M)g In M 

+ 4gq(L, M )  + ( g / L M ) O ( V F L i F )  

q ( ~ ,  M )  = L-' In(1 + VI + L ~ / M ~ )  + M-' In(1 + \'I + M ~ / L ~ ) .  

( A 9  

(A61 

L < M .  (A71 

where 

Assume for instance that 

Then (A6) implies that 
1 q ( ~ ,  M ) I  < L-' ln(1 + ~ ' 5 )  + M-'  In[(M/L)(l + fi)] 

< L-'[ln(l + V?) + ( L / M )  ln(M/L) + ( L / M )  l n ( l +  ~'31 
< + 2 ln(1 + fill. 

This expression has the form (g/LM)O(vL2 + M 2 ) .  Thus (A.5) reduces to (12). 

Note added in proof. After this work was completed we became aware of the work of Garel and Doniach 
(1982) and Gabay and Garel (1985) who considered the dipolar king ferromagnet for the geometry of an 
infinite slab of finite thickness. The authors treated the problem addressed in the present paper and in addition 
investigated in great detail the effect of a field and of the thickness. However, we disagree on their results for 
zero field because we have shown that the domain walls form a square network rather than a striped structure 
as claimed by Garel and Doniach. 
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